Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 264
Filter
1.
J Math Biol ; 88(6): 76, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691213

ABSTRACT

Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction-advection-diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number R 0 and show that the disease-free periodic solution is globally attractive when R 0 < 1 whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when R 0 > 1 . Moreover, we find that R 0 is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.


Subject(s)
Basic Reproduction Number , Epidemics , Mathematical Concepts , Models, Biological , Schistosomiasis , Seasons , Basic Reproduction Number/statistics & numerical data , Schistosomiasis/transmission , Schistosomiasis/epidemiology , Humans , Animals , Epidemics/statistics & numerical data , Epidemiological Models , Computer Simulation , Water Movements
2.
J Math Biol ; 88(6): 77, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695878

ABSTRACT

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Subject(s)
Basic Reproduction Number , Eutrophication , Mathematical Concepts , Models, Biological , Phytoplankton , Phytoplankton/virology , Phytoplankton/growth & development , Phytoplankton/physiology , Basic Reproduction Number/statistics & numerical data , Haptophyta/virology , Haptophyta/growth & development , Haptophyta/physiology , Computer Simulation
3.
Bull Math Biol ; 86(6): 71, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719993

ABSTRACT

Due to the complex interactions between multiple infectious diseases, the spreading of diseases in human bodies can vary when people are exposed to multiple sources of infection at the same time. Typically, there is heterogeneity in individuals' responses to diseases, and the transmission routes of different diseases also vary. Therefore, this paper proposes an SIS disease spreading model with individual heterogeneity and transmission route heterogeneity under the simultaneous action of two competitive infectious diseases. We derive the theoretical epidemic spreading threshold using quenched mean-field theory and perform numerical analysis under the Markovian method. Numerical results confirm the reliability of the theoretical threshold and show the inhibitory effect of the proportion of fully competitive individuals on epidemic spreading. The results also show that the diversity of disease transmission routes promotes disease spreading, and this effect gradually weakens when the epidemic spreading rate is high enough. Finally, we find a negative correlation between the theoretical spreading threshold and the average degree of the network. We demonstrate the practical application of the model by comparing simulation outputs to temporal trends of two competitive infectious diseases, COVID-19 and seasonal influenza in China.


Subject(s)
COVID-19 , Computer Simulation , Influenza, Human , Markov Chains , Mathematical Concepts , Models, Biological , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/epidemiology , COVID-19/prevention & control , Influenza, Human/epidemiology , Influenza, Human/transmission , China/epidemiology , Basic Reproduction Number/statistics & numerical data , Epidemiological Models , Pandemics/statistics & numerical data , Pandemics/prevention & control , Epidemics/statistics & numerical data
4.
J Math Biol ; 89(1): 1, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709376

ABSTRACT

In this paper, we introduce the notion of practically susceptible population, which is a fraction of the biologically susceptible population. Assuming that the fraction depends on the severity of the epidemic and the public's level of precaution (as a response of the public to the epidemic), we propose a general framework model with the response level evolving with the epidemic. We firstly verify the well-posedness and confirm the disease's eventual vanishing for the framework model under the assumption that the basic reproduction number R 0 < 1 . For R 0 > 1 , we study how the behavioural response evolves with epidemics and how such an evolution impacts the disease dynamics. More specifically, when the precaution level is taken to be the instantaneous best response function in literature, we show that the endemic dynamic is convergence to the endemic equilibrium; while when the precaution level is the delayed best response, the endemic dynamic can be either convergence to the endemic equilibrium, or convergence to a positive periodic solution. Our derivation offers a justification/explanation for the best response used in some literature. By replacing "adopting the best response" with "adapting toward the best response", we also explore the adaptive long-term dynamics.


Subject(s)
Basic Reproduction Number , Communicable Diseases , Epidemics , Mathematical Concepts , Models, Biological , Humans , Basic Reproduction Number/statistics & numerical data , Epidemics/statistics & numerical data , Epidemics/prevention & control , Communicable Diseases/epidemiology , Communicable Diseases/transmission , Disease Susceptibility/epidemiology , Epidemiological Models , Biological Evolution , Computer Simulation
5.
Bull Math Biol ; 86(6): 73, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739351

ABSTRACT

Behavior change significantly influences the transmission of diseases during outbreaks. To incorporate spontaneous preventive measures, we propose a model that integrates behavior change with disease transmission. The model represents behavior change through an imitation process, wherein players exclusively adopt the behavior associated with higher payoff. We find that relying solely on spontaneous behavior change is insufficient for eradicating the disease. The dynamics of behavior change are contingent on the basic reproduction number R a corresponding to the scenario where all players adopt non-pharmaceutical interventions (NPIs). When R a < 1 , partial adherence to NPIs remains consistently feasible. We can ensure that the disease stays at a low level or maintains minor fluctuations around a lower value by increasing sensitivity to perceived infection. In cases where oscillations occur, a further reduction in the maximum prevalence of infection over a cycle can be achieved by increasing the rate of behavior change. When R a > 1 , almost all players consistently adopt NPIs if they are highly sensitive to perceived infection. Further consideration of saturated recovery leads to saddle-node homoclinic and Bogdanov-Takens bifurcations, emphasizing the adverse impact of limited medical resources on controlling the scale of infection. Finally, we parameterize our model with COVID-19 data and Tokyo subway ridership, enabling us to illustrate the disease spread co-evolving with behavior change dynamics. We further demonstrate that an increase in sensitivity to perceived infection can accelerate the peak time and reduce the peak size of infection prevalence in the initial wave.


Subject(s)
Basic Reproduction Number , COVID-19 , Disease Outbreaks , Mathematical Concepts , Models, Biological , Humans , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , SARS-CoV-2 , Computer Simulation , Health Behavior , Pandemics/prevention & control
6.
J Math Biol ; 88(6): 75, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689137

ABSTRACT

The aim of this paper is to develop and investigate a novel mathematical model of the dynamical behaviors of chronic hepatitis B virus infection. The model includes exposed infected hepatocytes, intracellular HBV DNA-containing capsids, uses a general incidence function for viral infection covering a variety of special cases available in the literature, and describes the interaction of cytotoxic T lymphocytes that kill the infected hepatocytes and the magnitude of B-cells that send antibody immune defense to neutralize free virions. Further, one time delay is incorporated to account for actual capsids production. The other time delays are used to account for maturation of capsids and free viruses. We start with the analysis of the proposed model by establishing the local and global existence, uniqueness, non-negativity and boundedness of solutions. After defined the threshold parameters, we discuss the stability properties of all possible steady state constants by using the crafty Lyapunov functionals, the LaSalle's invariance principle and linearization methods. The impacts of the three time delays on the HBV infection transmission are discussed through local and global sensitivity analysis of the basic reproduction number and of the classes of infected states. Finally, an application is provided and numerical simulations are performed to illustrate and interpret the theoretical results obtained. It is suggested that, a good strategy to eradicate or to control HBV infection within a host should concentrate on any drugs that may prolong the values of the three delays.


Subject(s)
Adaptive Immunity , Capsid , Computer Simulation , Hepatitis B virus , Hepatitis B, Chronic , Hepatocytes , Mathematical Concepts , Hepatocytes/immunology , Hepatocytes/virology , Hepatitis B virus/immunology , Humans , Capsid/immunology , Adaptive Immunity/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatitis B, Chronic/transmission , Models, Immunological , T-Lymphocytes, Cytotoxic/immunology , Basic Reproduction Number/statistics & numerical data , B-Lymphocytes/immunology , DNA, Viral/immunology , Models, Biological
7.
PLoS Comput Biol ; 20(4): e1012021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38626217

ABSTRACT

The time-varying effective reproduction number Rt is a widely used indicator of transmission dynamics during infectious disease outbreaks. Timely estimates of Rt can be obtained from reported cases counted by their date of symptom onset, which is generally closer to the time of infection than the date of report. Case counts by date of symptom onset are typically obtained from line list data, however these data can have missing information and are subject to right truncation. Previous methods have addressed these problems independently by first imputing missing onset dates, then adjusting truncated case counts, and finally estimating the effective reproduction number. This stepwise approach makes it difficult to propagate uncertainty and can introduce subtle biases during real-time estimation due to the continued impact of assumptions made in previous steps. In this work, we integrate imputation, truncation adjustment, and Rt estimation into a single generative Bayesian model, allowing direct joint inference of case counts and Rt from line list data with missing symptom onset dates. We then use this framework to compare the performance of nowcasting approaches with different stepwise and generative components on synthetic line list data for multiple outbreak scenarios and across different epidemic phases. We find that under reporting delays realistic for hospitalization data (50% of reports delayed by more than a week), intermediate smoothing, as is common practice in stepwise approaches, can bias nowcasts of case counts and Rt, which is avoided in a joint generative approach due to shared regularization of all model components. On incomplete line list data, a fully generative approach enables the quantification of uncertainty due to missing onset dates without the need for an initial multiple imputation step. In a real-world comparison using hospitalization line list data from the COVID-19 pandemic in Switzerland, we observe the same qualitative differences between approaches. The generative modeling components developed in this work have been integrated and further extended in the R package epinowcast, providing a flexible and interpretable tool for real-time surveillance.


Subject(s)
Basic Reproduction Number , Bayes Theorem , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/transmission , Basic Reproduction Number/statistics & numerical data , Disease Outbreaks/statistics & numerical data , Computational Biology/methods , SARS-CoV-2 , Computer Simulation
8.
BMC Med Res Methodol ; 24(1): 97, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678207

ABSTRACT

A novel (nonlinear) mathematical model for the transmission of Coronavirus 19 (COVID-19) with eight compartments and considering the impact of vaccination is examined in this manuscript. The qualitative behavior of the system such as the boundedness of solutions, the basic reproduction number, and the stability of the equilibrium points is investigated in detail. Some domestic real data collected from the Kerman University of Medical Science (KUMC) is used to estimate the parameters of the proposed model. We predict the dynamical behavior of the system through numerical simulations based on a combined spectral matrix collocation methodology. In this respect, we first linearize the nonlinear system of equations by the method of quasilinearization (QLM). Hence, the shifted version of Chebyshev polynomials of the second kind (SCPSK) is utilized along with the domain-splitting strategy to acquire the solutions of the system over a long time interval. The uniform convergence and upper bound estimation of the SCPSK bases are proved in a rigorous manner. Moreover, the technique of residual error functions is used to testify the accuracy of the QLM-SCPSK method. The presented numerical results justify the robustness and good accuracy of the QLM-SCPSK technique. The achieved numerical orders of convergence indicate that the QLM-SCSK algorithm has exponential rate of convergence. Using the linearization technique in one hand and the domain-splitting strategy on the other hand, enable us to predict the behaviour of similar disease problems with high accuracy and maximum efficiency on an arbitrary domain of interest.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccination , COVID-19/prevention & control , COVID-19/transmission , Humans , SARS-CoV-2/immunology , Vaccination/methods , Vaccination/statistics & numerical data , Basic Reproduction Number/statistics & numerical data , Algorithms , Computer Simulation , Models, Theoretical , Nonlinear Dynamics
9.
J Math Biol ; 88(6): 74, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684552

ABSTRACT

In this paper, we propose a reaction-advection-diffusion dengue fever model with seasonal developmental durations and intrinsic incubation periods. Firstly, we establish the well-posedness of the model. Secondly, we define the basic reproduction number ℜ 0 for this model and show that ℜ 0 is a threshold parameter: if ℜ 0 < 1 , then the disease-free periodic solution is globally attractive; if ℜ 0 > 1 , the system is uniformly persistent. Thirdly, we study the global attractivity of the positive steady state when the spatial environment is homogeneous and the advection of mosquitoes is ignored. As an example, we use the model to investigate the dengue fever transmission case in Guangdong Province, China, and explore the impact of model parameters on ℜ 0 . Our findings indicate that ignoring seasonality may underestimate ℜ 0 . Additionally, the spatial heterogeneity of transmission may increase the risk of disease transmission, while the increase of seasonal developmental durations, intrinsic incubation periods and advection rates can all reduce the risk of disease transmission.


Subject(s)
Basic Reproduction Number , Dengue , Infectious Disease Incubation Period , Mathematical Concepts , Models, Biological , Mosquito Vectors , Seasons , Dengue/transmission , Basic Reproduction Number/statistics & numerical data , Animals , Humans , China/epidemiology , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Aedes/virology , Aedes/growth & development , Epidemiological Models , Dengue Virus/growth & development , Computer Simulation
10.
Math Biosci ; 371: 109181, 2024 May.
Article in English | MEDLINE | ID: mdl-38537734

ABSTRACT

We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that R0 is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmission , COVID-19/epidemiology , Humans , Missouri/epidemiology , Uncertainty , Basic Reproduction Number/statistics & numerical data , Epidemiological Models
11.
Epidemiol Health ; 46: e2024025, 2024.
Article in English | MEDLINE | ID: mdl-38317530

ABSTRACT

OBJECTIVES: Although the role of specific holidays in modifying transmission dynamics of infectious diseases has received some research attention, the epidemiological impact of public holidays on the transmission of coronavirus disease 2019 (COVID-19) remains unclear. METHODS: To assess the extent of increased transmission frequency during public holidays, we collected COVID-19 incidence and mobility data in Hokkaido, Tokyo, Aichi, and Osaka from February 15, 2020 to September 30, 2021. Models linking the estimated effective reproduction number (Rt) with raw or adjusted mobility, public holidays, and the state of emergency declaration were developed. The best-fit model included public holidays as an essential input variable, and was used to calculate counterfactuals of Rt in the absence of holidays. RESULTS: During public holidays, on average, Rt increased by 5.71%, 3.19%, 4.84%, and 24.82% in Hokkaido, Tokyo, Aichi, and Osaka, respectively, resulting in a total increase of 580 (95% confidence interval [CI], 213 to 954), 2,209 (95% CI, 1,230 to 3,201), 1,086 (95% CI, 478 to 1,686), and 5,211 (95% CI, 4,554 to 5,867) cases that were attributable to the impact of public holidays. CONCLUSIONS: Public holidays intensified the transmission of COVID-19, highlighting the importance of considering public holidays in designing appropriate public health and social measures in the future.


Subject(s)
COVID-19 , Holidays , COVID-19/epidemiology , COVID-19/transmission , Humans , Japan/epidemiology , Models, Theoretical , Basic Reproduction Number/statistics & numerical data , Incidence
12.
Nat Commun ; 13(1): 1155, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241662

ABSTRACT

Many locations around the world have used real-time estimates of the time-varying effective reproductive number ([Formula: see text]) of COVID-19 to provide evidence of transmission intensity to inform control strategies. Estimates of [Formula: see text] are typically based on statistical models applied to case counts and typically suffer lags of more than a week because of the latent period and reporting delays. Noting that viral loads tend to decline over time since illness onset, analysis of the distribution of viral loads among confirmed cases can provide insights into epidemic trajectory. Here, we analyzed viral load data on confirmed cases during two local epidemics in Hong Kong, identifying a strong correlation between temporal changes in the distribution of viral loads (measured by RT-qPCR cycle threshold values) and estimates of [Formula: see text] based on case counts. We demonstrate that cycle threshold values could be used to improve real-time [Formula: see text] estimation, enabling more timely tracking of epidemic dynamics.


Subject(s)
COVID-19/transmission , Epidemiological Models , SARS-CoV-2 , Viral Load , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/virology , Computer Simulation , Computer Systems , Epidemics , Hong Kong/epidemiology , Humans , Models, Statistical , Pandemics , Viral Load/statistics & numerical data
13.
Comput Math Methods Med ; 2022: 6145242, 2022.
Article in English | MEDLINE | ID: mdl-35222685

ABSTRACT

A new theoretical model of epidemic kinetics is considered, which uses elements of the physical model of the kinetics of the atomic level populations of an active laser medium as follows: a description of states and their populations, transition rates between states, an integral operator, and a source of influence. It is shown that to describe a long-term epidemic, it is necessary to use the concept of the source of infection. With a model constant source of infection, the epidemic, in terms of the number of actively infected people, goes to a stationary regime, which does not depend on the population size and the characteristics of quarantine measures. Statistics for Moscow daily increase in infected is used to determine the real source of infection. An interpretation of the waves generated by the source is given. It is shown that more accurate statistics of excess mortality can only be used to clarify the frequency rate of mortality of the epidemic, but not to determine the source of infection.


Subject(s)
Epidemics/statistics & numerical data , Epidemiological Models , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/mortality , Communicable Diseases/epidemiology , Communicable Diseases/mortality , Computational Biology , Disease Outbreaks/statistics & numerical data , Humans , Kinetics , Moscow/epidemiology , Pandemics/statistics & numerical data , SARS-CoV-2 , Vaccination/statistics & numerical data
14.
Comput Math Methods Med ; 2022: 6545179, 2022.
Article in English | MEDLINE | ID: mdl-35126631

ABSTRACT

In this article, we have developed a deterministic Susceptible-Latent-Infectious-Recovered (SLIR) model for diphtheria outbreaks. Here, we have studied a case of the diphtheria outbreak in the Rohingya refugee camp in Bangladesh to trace the disease dynamics and find out the peak value of the infection. Both analytical and numerical investigations have been performed on the model to find several remarkable behaviors like the positive and bounded solution, basic reproductive ratio, and equilibria such as disease extinction equilibrium and disease persistence equilibrium which are characterized depending on the basic reproductive ratio and global stability of the model using Lyapunov function for both equilibria. Parameter estimation has been performed to determine the values of the parameter from the daily case data using numerical technique and determined the value of the basic reproductive number for the outbreak as ℛ 0 = 5.86.


Subject(s)
Diphtheria/epidemiology , Epidemics , Epidemiological Models , Refugee Camps , Bangladesh/epidemiology , Basic Reproduction Number/statistics & numerical data , Computational Biology , Computer Simulation , Diphtheria/transmission , Epidemics/statistics & numerical data , Humans , Nonlinear Dynamics
15.
Comput Math Methods Med ; 2022: 3105734, 2022.
Article in English | MEDLINE | ID: mdl-35069778

ABSTRACT

In this paper, we proposed and analyzed a realistic compartmental mathematical model on the spread and control of HIV/AIDS-pneumonia coepidemic incorporating pneumonia vaccination and treatment for both infections at each infection stage in a population. The model exhibits six equilibriums: HIV/AIDS only disease-free, pneumonia only disease-free, HIV/AIDS-pneumonia coepidemic disease-free, HIV/AIDS only endemic, pneumonia only endemic, and HIV/AIDS-pneumonia coepidemic endemic equilibriums. The HIV/AIDS only submodel has a globally asymptotically stable disease-free equilibrium if ℛ 1 < 1. Using center manifold theory, we have verified that both the pneumonia only submodel and the HIV/AIDS-pneumonia coepidemic model undergo backward bifurcations whenever ℛ 2 < 1 and ℛ 3 = max{ℛ 1, ℛ 2} < 1, respectively. Thus, for pneumonia infection and HIV/AIDS-pneumonia coinfection, the requirement of the basic reproduction numbers to be less than one, even though necessary, may not be sufficient to completely eliminate the disease. Our sensitivity analysis results demonstrate that the pneumonia disease transmission rate ß 2 and the HIV/AIDS transmission rate ß 1 play an important role to change the qualitative dynamics of HIV/AIDS and pneumonia coinfection. The pneumonia infection transmission rate ß 2 gives rises to the possibility of backward bifurcation for HIV/AIDS and pneumonia coinfection if ℛ 3 = max{ℛ 1, ℛ 2} < 1, and hence, the existence of multiple endemic equilibria some of which are stable and others are unstable. Using standard data from different literatures, our results show that the complete HIV/AIDS and pneumonia coinfection model reproduction number is ℛ 3 = max{ℛ 1, ℛ 2} = max{1.386, 9.69 } = 9.69 at ß 1 = 2 and ß 2 = 0.2 which shows that the disease spreads throughout the community. Finally, our numerical simulations show that pneumonia vaccination and treatment against disease have the effect of decreasing pneumonia and coepidemic disease expansion and reducing the progression rate of HIV infection to the AIDS stage.


Subject(s)
AIDS-Related Opportunistic Infections/epidemiology , Acquired Immunodeficiency Syndrome/epidemiology , HIV Infections/epidemiology , Pneumonia/epidemiology , AIDS-Related Opportunistic Infections/prevention & control , AIDS-Related Opportunistic Infections/transmission , Acquired Immunodeficiency Syndrome/complications , Acquired Immunodeficiency Syndrome/transmission , Basic Reproduction Number/statistics & numerical data , Coinfection , Computational Biology , Computer Simulation , Endemic Diseases/prevention & control , Endemic Diseases/statistics & numerical data , Epidemiological Models , HIV Infections/complications , HIV Infections/transmission , Humans , Models, Biological , Pneumonia/complications , Pneumonia/prevention & control , Vaccination
16.
Comput Math Methods Med ; 2022: 7772263, 2022.
Article in English | MEDLINE | ID: mdl-35069795

ABSTRACT

COVID-19 is a world pandemic that has affected and continues to affect the social lives of people. Due to its social and economic impact, different countries imposed preventive measures that are aimed at reducing the transmission of the disease. Such control measures include physical distancing, quarantine, hand-washing, travel and boarder restrictions, lockdown, and the use of hand sanitizers. Quarantine, out of the aforementioned control measures, is considered to be more stressful for people to manage. When people are stressed, their body immunity becomes weak, which leads to multiplying of coronavirus within the body. Therefore, a mathematical model consisting of six compartments, Susceptible-Exposed-Quarantine-Infectious-Hospitalized-Recovered (SEQIHR) was developed, aimed at showing the impact of stress on the transmission of COVID-19 disease. From the model formulated, the positivity, bounded region, existence, uniqueness of the solution, the model existence of free and endemic equilibrium points, and local and global stability were theoretically proved. The basic reproduction number (R 0) was derived by using the next-generation matrix method, which shows that, when R 0 < 1, the disease-free equilibrium is globally asymptotically stable whereas when R 0 > 1 the endemic equilibrium is globally asymptotically stable. Moreover, the Partial Rank Correlation Coefficient (PRCC) method was used to study the correlation between model parameters and R 0. Numerically, the SEQIHR model was solved by using the Rung-Kutta fourth-order method, while the least square method was used for parameter identifiability. Furthermore, graphical presentation revealed that when the mental health of an individual is good, the body immunity becomes strong and hence minimizes the infection. Conclusively, the control parameters have a significant impact in reducing the transmission of COVID-19.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Quarantine , SARS-CoV-2 , Stress, Physiological , Basic Reproduction Number/statistics & numerical data , COVID-19/physiopathology , Computational Biology , Computer Simulation , Humans , Mathematical Concepts , Models, Statistical , Pandemics/statistics & numerical data , Quarantine/psychology , Stress, Psychological
17.
Antimicrob Resist Infect Control ; 11(1): 3, 2022 01 09.
Article in English | MEDLINE | ID: mdl-35000583

ABSTRACT

OBJECTIVES: The purpose of this study is to describe the situation of COVID-19 in European countries and to identify important factors related to prevention and control. METHODS: We obtained data from World Health Statistics 2020 and the Institute for Health Metrics and Evaluation (IHME). We calculated the Rt values of 51 countries in Europe under different prevention and control measures. We used lasso regression to screen factors associated with morbidity and mortality. For the selected variables, we used quantile regression to analyse the relevant influencing factors in countries with different levels of morbidity or mortality. RESULTS: The government has a great influence on the change in Rt value through prevention and control measures. The most important factors for personal and group prevention and control are the mobility index, testing, the closure of educational facilities, restrictions on large-scale gatherings, and commercial restrictions. The number of ICU beds and doctors in medical resources are also key factors. Basic sanitation facilities, such as the proportion of safe drinking water, also have an impact on the COVID-19 epidemic. CONCLUSIONS: We described the current status of COVID-19 in European countries. Our findings demonstrated key factors in individual and group prevention measures.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , SARS-CoV-2 , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/mortality , Communicable Disease Control/methods , Communicable Disease Control/statistics & numerical data , Europe/epidemiology , Global Health/statistics & numerical data , Humans , Linear Models , Pandemics/statistics & numerical data
18.
PLoS One ; 16(12): e0261424, 2021.
Article in English | MEDLINE | ID: mdl-34965272

ABSTRACT

The COVID-19 outbreak has caused two waves and spread to more than 90% of Canada's provinces since it was first reported more than a year ago. During the COVID-19 epidemic, Canadian provinces have implemented many Non-Pharmaceutical Interventions (NPIs). However, the spread of the COVID-19 epidemic continues due to the complex dynamics of human mobility. We develop a meta-population network model to study the transmission dynamics of COVID-19. The model takes into account the heterogeneity of mitigation strategies in different provinces of Canada, such as the timing of implementing NPIs, the human mobility in retail and recreation, grocery and pharmacy, parks, transit stations, workplaces, and residences due to work and recreation. To determine which activity is most closely related to the dynamics of COVID-19, we use the cross-correlation analysis to find that the positive correlation is the highest between the mobility data of parks and the weekly number of confirmed COVID-19 from February 15 to December 13, 2020. The average effective reproduction numbers in nine Canadian provinces are all greater than one during the time period, and NPIs have little impact on the dynamics of COVID-19 epidemics in Ontario and Saskatchewan. After November 20, 2020, the average infection probability in Alberta became the highest since the start of the COVID-19 epidemic in Canada. We also observe that human activities around residences do not contribute much to the spread of the COVID-19 epidemic. The simulation results indicate that social distancing and constricting human mobility is effective in mitigating COVID-19 transmission in Canada. Our findings can provide guidance for public health authorities in projecting the effectiveness of future NPIs.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Epidemics/prevention & control , SARS-CoV-2 , Travel/statistics & numerical data , Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , Canada/epidemiology , Humans , Incidence , Models, Statistical , Physical Distancing , Quarantine/methods
19.
Sci Rep ; 11(1): 24124, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916534

ABSTRACT

The quantification of spreading heterogeneity in the COVID-19 epidemic is crucial as it affects the choice of efficient mitigating strategies irrespective of whether its origin is biological or social. We present a method to deduce temporal and individual variations in the basic reproduction number directly from epidemic trajectories at a community level. Using epidemic data from the 98 districts in Denmark we estimate an overdispersion factor k for COVID-19 to be about 0.11 (95% confidence interval 0.08-0.18), implying that 10 % of the infected cause between 70 % and 87 % of all infections.


Subject(s)
Algorithms , Basic Reproduction Number/statistics & numerical data , COVID-19/transmission , Models, Theoretical , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , COVID-19/virology , Denmark/epidemiology , Epidemics/prevention & control , Geography , Humans , SARS-CoV-2/physiology
20.
Sci Rep ; 11(1): 23286, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857840

ABSTRACT

The reproduction number of an infectious disease, such as CoViD-19, can be described through a modified version of the susceptible-infected-recovered (SIR) model with time-dependent contact rate, where mobility data are used as proxy of average movement trends and interpersonal distances. We introduce a theoretical framework to explain and predict changes in the reproduction number of SARS-CoV-2 in terms of aggregated individual mobility and interpersonal proximity (alongside other epidemiological and environmental variables) during and after the lockdown period. We use an infection-age structured model described by a renewal equation. The model predicts the evolution of the reproduction number up to a week ahead of well-established estimates used in the literature. We show how lockdown policies, via reduction of proximity and mobility, reduce the impact of CoViD-19 and mitigate the risk of disease resurgence. We validate our theoretical framework using data from Google, Voxel51, Unacast, The CoViD-19 Mobility Data Network, and Analisi Distribuzione Aiuti.


Subject(s)
Basic Reproduction Number/statistics & numerical data , COVID-19/epidemiology , COVID-19/transmission , Movement , Contact Tracing , Humans , Italy/epidemiology , Models, Theoretical , Physical Distancing , Quarantine , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...